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Abstract. A sandpile model with a stochastic toppling rule is studied. The control parameters and
the phase diagram are determined through a mean-field approach, and the subcritical and critical
regions are analysed. The model is found to have some similarities with directed percolation, but
the existence of different boundary conditions and conservation law leads to a different universality
class, where the critical state is extended to a line segment due to self-organization. These results
are supported by numerical simulations in one dimension. This model constitutes a simple model
which captures the essential difference between ordinary nonequilibrium critical phenomena, like
directed percolation, and self-organized criticality.

1. introduction

The idea of self-organized criticality (SOC) was introduced to describe the behaviour of a class
of extended dissipative dynamical systems which naturally evolve to a critical state, consisting
of avalanches propagating throughout the system [1]. From the very beginning it was observed
that this new idea has some connections with ordinary critical phenomena [2]. More recently a
novel mean-field (MF) analysis of SOC was presented, which pointed out similarities between
SOC models and models with absorbing states [3]. Directed percolation (DP) [4] is one of
the simplest and most recurrent models with absorbing states. Under very general guidelines
(locality, scalar variable, etc) it has been proposed that a wide range of models would fall into
the DP universality class [4–6]. Although SOC models do not belong to the DP universality
class they do have some connection with DP [7–9]. Indeed, Maslov and Zhang [10], have
argued that for space dimensionalityd > 2, a version of a stochastic sandpile model is related
to (d + 1)-dimensional directed percolation with time interpreted as the preferred direction.

Recently, Tadíc and Dhar have shown that a kind of stochastic sandpile model has some
analogies with DP [9]. They studied a directed sandpile model in which unstable sites topple
with probabilityp. They observed that above a critical thresholdpc the system shows SOC,
while below the threshold the system is not critical. The critical probability was identified
with the threshold for DP in a square lattice and the scaling exponents were obtained in terms
of DP exponents. However, they could not give a detailed description of the phase diagram,
since their analysis was limited to the SOC regime abovepc, while the state belowpc could
not be characterized.

Following the work of Tadíc and Dhar, we study a class of stochastic sandpile models
with an undirected toppling rule. As in their model, sites topples with a probabilityp but now
grains are distributed to each nearest neighbour. In order to provide a theoretical description
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of the model, we have generalized the MF theory by Vespignani and Zapperi [3] including
the control parameterp. In this way we obtain the complete phase diagram of the model.
The existence of a critical probabilitypc and a quasi-stationary state belowpc are obtained.
Based on MF analysis and on the evolution rules we argue that the state belowpc is similar
to DP, but with different boundary conditions. Using this hypothesis we apply the scaling
theory developed for DP to the present stochastic sandpile model. Numerical simulations in
one dimension support our hypothesis.

The paper is organized as follows. In section 2 we introduce the dynamical evolution rules
for the stochastic version of the Bak–Tang–Wiesenfeld (BTW) model. We perform a single-
site MF approximation and determine the average densities in the stationary state. It is found
that the driving rateh andp are the only control parameters and that the system is critical in the
line segment (h = 0+, pc 6 p 6 1). Then, in section 3 we show the connection with DP and
derive some scaling relations. In order to check our predictions we have performed numerical
simulations in one dimension, and the main results are presented in section 4. Finally, the
summary and conclusions are given in section 5.

2. MF theory

We establish our stochastic sandpile model defined as follows. An integer variablezi (height
or energy) is assigned to each site of ad-dimensional lattice and energy is added to the system
at a rateh. When a site receives a grain and its energy exceeds a thresholdzc then, with
probabilityp, it relaxes according to the following ruleszi → zi − g andzj → zj + 1 at
each ofg nearest neighbours. Open boundary conditions are assumed. One may call this
model a non-Abelian sandpile model with stochastic rules. The non-Abelian behaviour makes
it different from other stochastic models such as the Manna model [11]. However, we will
simply call it the stochastic sandpile model.

The first step towards a comprehensive understanding of critical phenomena is provided
by MF theory, which gives insight into the fundamental physical mechanism of the problem.
Thus, we start analysing the stochastic sandpile model through a MF approach. With this
simple picture we introduce the connection with directed percolation.

The first MF theory for sandpile models was introduced by Tang and Bak [2], and
only deterministic toppling rules were considered. Later on, Caldarelli [12] generalized
this MF theory to sandpile models with a certain degree of stochasticity in the toppling
rules. Particularly, Caldarelli studied sandpile models wherep is a function ofzi , such that
0 < p(z) < 1 below the critical thresholdzc andp(z) = 1 above. Their MF theory and
further numerical simulations reveal that the stochastic rules, introduced in this way, change
the average ofz, but do not destroy the critical state [12]. In the sandpile models analysed by
Caldarellip is not a control parameter, its average value is determined by the system dynamics.
In these models the system self-organizes to a stationary sate, where〈p(z)〉 is such that the
system remains in a critical state. In contrast, in the stochastic sandpile model considered here
p is a control parameter. It is expected that for sufficiently small values ofp the critical state
will be destroyed. Therefore, we have to develop a MF theory wherep appears explicitly as a
control parameter.

Recently, Vespignani and Zapperi [3] have introduced a more general framework. In
contrast to previous theories, their MF approach is not based on some particular sandpile model
but on general considerations which are common to all of them, which are even extendable to
other SOC models [3]. Within this formalism, SOC appears as a special case of nonequilibrium
critical phenomena. They classify the states for each site into three categories: stable (s),
critical (c), and active (a). Stable sites are those that cannot become active by the addition
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of energy, critical sites are those that become active by the addition of energy and active sites
are relaxing and transfer energy to their neighbours. These definitions become very clear in
a deterministic sandpile model. For instance (assuming the probability that a site receives
two energy grains simultaneously is negligible) sites withz < zc − 1 are stable, those with
z = zc−1 are critical and those withz > zc are active. However, in the stochastic model sites
with z > zc topple with probabilityp. Again sites withz < zc − 1 are stable since they can
never become active after receiving a single energy grain. Nevertheless, those withz > zc−1
do not have a well-defined state. For instance, sites withz = zc−1 may topple after receiving
one energy grain and, therefore, they cannot be stable. However, they are not strictly critical
because only a fractionp of them will topple after receiving a grain of energy. Hence, in the
case of stochastic sandpile models the subdivision in stable, critical and active does not cover
all the possible states each site can assume, i.e.ρs + ρc + ρa < 1.

Let us divide the states that each site can assume in stable (s), unstable (u), and active
(a) and denote their average densities byρs , ρu andρa, respectively. The definitions of stable
and active sites are the same as considered by Vespignani and Zapperi, while unstable sites
are now those sites thatmaybecome active by the addition of energy. Under these definitions,
sites withz < zc − 1 are stable, those withz = zc − 1 are unstable and those withz > zc may
be either unstable or active. Only a fractionp of the unstable sites will become active after
receiving energy and, therefore, are critical sites, i.e.

ρc = pρu. (1)

This equality makes the connection between our MF approach and that of Vespignani and
Zapperi [3]. In the deterministic limitp = 1 there is no difference between critical and
unstable sites.

To study the dynamics of the stochastic sandpile model we consider the following Markov
process for the average densities

∂

∂t
ρn =

∑
m6=n

Tmnρm −
∑
m6=n

Tnmρn (2)

whereTnm are the transition rates from staten to statem (see figure 1). By constructing the
model in one time step stable sites never becomes active and unstable sites never become
stable, i.e.Tsa = Tus = 0. Tas = q andTau = 1−q, whereq is the fraction of active sites that
becomes stable after relaxing. In deterministic modelsq should be taken as equal to one [3].
However, in stochastic modelsz may take large enough values compared withzc in such a
way that an active site may become unstable after relaxing, i.e.q < 1. Although an active site
with z� zc may remain active due to an addition of energy this type of transition is of second
order, and can be neglected for smallρa andh. The transition ratesTsu andTua depend on the

Figure 1. Schematic representation of the single site approximation for
the stochastic sandpile model. Sites are divided in stable (s) unstable
(u) and active (s). Tmn are the transition rates for the statem to n.
Transitions which do not take place are not represented.



2636 A Vázquez and O Sotolongo Costa

probability per unit time that a site receives energy. Ifρa andh are small then the probability
per unit time that a site receives more than one grain of energy is negligible, and the probability
per unit time that a site receives a grain of energy may be approximated by

h1 = h + (g − ε)ρa (3)

whereg − ε is the effective number of nearest neighbours andε is the dissipation rate per
toppling event, an effective parameter which accounts for boundary dissipation. Ifu (p) is
the fraction of stable (unstable) sites that become unstable (active) after receiving a grain of
energy thenTsu = uh1 (Tua = ph1). Taking into account these considerations the system of
differential equation (2) reduces to

∂

∂t
ρa = −[1− (g − ε)ρc]ρa + ρch + O(h2, hρa) (4)

∂

∂t
ρs = qρa − u(h + gρa)ρs + O(h2, hρa) (5)

together with the normalization condition

ρs + ρu + ρa = 1. (6)

Notice that, among unstable sites, only the fraction of critical sitesρc = pρu contributes to
the system dynamics, the other fraction is only relevant through the normalization condition
in equation (6). The system of equations is completed by the equation of energy balance:

∂

∂t
E = (h− ερa)Ld (7)

whereE is the total energy of the system,hLd is the average influx of energy andερaLd the
average outflux of energy.

2.1. Critical state

In the stationary state (∂ρn
∂t
= 0, ∂E

∂t
= 0) from equations (4)–(7) and equation (1), we obtain

ρa = h

ε
ρc = 1

g
+ O(h) (8)

ρu = 1

pg
+ O(h) ρs = pg − 1

pg
+ O(h) (9)

q

u
= pg − 1

p
+ O(h). (10)

Comparing these expressions with the ones obtained by Vespignani and Zapperi [3], we observe
that the average densities of active and critical sites have the same stationary solutions. The
differences appear in the density of stable and unstable sites, which now depend on the new
control parameterp.

For 1/g 6 p 6 1 we have 1/g 6 ρu 6 1, 0 6 ρs 6 (g − 1)/g and, therefore, there
is no inconsistency in the stationary solutions obtained above. In this range ofp, within the
MF approach, there is no distinction between the critical state of stochastic and deterministic
sandpile models. The model is critical in the double limith, ε → 0 andh/ε → 0 [3] and the
susceptibility,

χ = ∂ρa

∂h
= 1

ε
(11)

diverges at the critical state. For a small perturbation around the subcritical stateρa =
h/ε +1ρa, ρc ≈ 1/g and from equation (4) one obtains

1ρa(t) ∝ exp(−εt/g) (12)
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in agreement with the result for deterministic models [3].
From equations (11) and (12) one may think thatε is a control parameter of the model.

However, if the dissipation takes place only at the boundary thenε will decrease with increasing
system size, because the number of active sites in the bulk grows faster than the number of
active sites at the boundary. Hence, we are just dealing with a finite-size effect. The statement
that the system is not in a critical state is equivalent to the statement that there is no critical state
in a finite system. If dissipation takes place only at the boundaryε is not a control parameter,
it just reflects a finite-size effect which at the same time is a necessary condition to obtain
a stationary state. In this sense, the criticality here is different from the criticality at phase
transitions where boundary effects always disappear in the thermodynamic limit [1].

In contrast, the driving fieldh is actually a control parameter. Sincehmust satisfyh < ε

andε → 0 whenL→∞, then we must fine tuneh to zero in order to obtain criticality in the
thermodynamic limit. The timescale separation becomes a necessary condition for criticality.
Now if we assume separation of timescales thenp will be the only control parameter of the
model. This hypothesis is fulfilled in the computer simulations, where a new grain of energy
is added only once there are no active sites in the lattice.

2.2. Breakdown of SOC by stochastic rules

When 0< p < 1/g the stationary solutions in equations (8)–(10) are no longer valid because
they implyρu > 1 andρs < 0. Let us analyse the variation ofρu andρc withp to understand the
origin of this inconsistency. In the deterministic casep = 1, there is no distinction between
unstable and critical sites, i.e.ρc = ρu = 1/g. However, whenp < 1 critical sites are a
fraction of unstable sitesρc = pρu. Hence, since in the stationary stateρc = 1/g, the system
has to self-organize increasing the average density of unstable sites up toρu = 1/pg > 1/g
and decreasing the average density of stable sites. But whenp = 1/g we haveρu = 1 and
ρs = 0. Therefore, whenp keeps decreasing the system cannot provide more unstable sites.
Thenρc < 1/g and the stationary solutions in equations (8)–(10) fall down.

Let us assume that for 0< p < 1/g the average densities reach an stationary state, which
of course cannot be given by equations (8)–(10). From equation (4) it results in

ρa = ρch

1− (g − ε)ρc . (13)

Using this expression in equation (7), one obtains

∂

∂t
E = 1− gρc

1− (g − ε)ρc hL
d. (14)

According to equation (1),ρc = pρu 6 p < 1/g, independently ofρu. Hence,∂E
∂t
> 0 and

the total energy will increase with time. Moreover, stable sites are those withz < zc − 1 and,
therefore, it is expected that after a long enough time there will be no stable sites remaining.
In this quasi-stationary state, the energy increases with time and the average densities will take
the stationary values

ρa = hp

1− (g − ε)p ρc = p + O(h) (15)

ρu = 1 + O(h) ρs = 0 (16)

q = 0. (17)

Now it is clear thatp is a control parameter for the class of stochastic sandpile models analysed
here.
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Figure 2. Evolution of an avalanche in the stochastic sandpile model. Empty
sites are inactive (stable + unstable) and filled sites are active. This figure
clearly shows that the avalanche evolves in a directed square lattice, where the
probability that a site is present isρc.

The susceptibility in this region is given by, assumingε � g,

χ = p

1− pg . (18)

For a small perturbation around the subcritical state, we haveρa = χh +1ρa, andρc ≈ p.
Then from equation (4) one obtains, again consideringε � g,

1ρa(t) ∝ exp[−(1− pg)t ]. (19)

The critical state breaks down by the stochastic rules, oncep < pc. To reach the critical state
we have to fine-tunep. Near the critical threshold 1/g both the susceptibilityχ ∼ (pc−p)−1

and the characteristic time∼ (pc − p)−1 diverge.
In summary, we have found a critical probabilitypc above which the system is in a SOC

state, while it is in a subcritical state below that value.

3. Scaling theory

ρc is the probability that a site becomes active after receiving a grain of energy. In the absence
of an external field, it is also the probability that a site becomes active if one of its neighbours
was active in the previous step. This problem is equivalent to site-directed percolation ind + 1
dimensions (d spatial dimensions + time),ρc being the probability that a site is present. The
only difference remains in the boundary conditions: while in DP the system is assumed to be
of infinite extent, here we deal with a finite system with open boundaries. This picture is better
represented in figure 2.

3.1. The case0< p < pc

According to MF theory, belowpc there are no stable sites and the fraction of critical sites
is given byρc = p. Thus, the evolution rules correspond to DP. The existence of different
boundary conditions may lead to differences in some scaling exponents. However, the nature
of the phenomena is the same. For instance, DP near a wall reveals that the correlation length
exponents are identical to those obtained in DP in an infinite lattice [13], but other exponents
take different values. This is a consequence of the fact that in DP near a wall the avalanches
are a subset of the avalanches in DP in an infinite lattice. We thus expect a similar behaviour in
the stochastic sandpile model belowpc. In this case, avalanches starting far from the boundary
behave as in DP in an infinite lattice, while avalanches starting near the boundary behave like
the avalanches in DP near a wall. Hence, the correlation lengths and the correlation length
exponents are identical to those for DP in an infinite lattice, i.e.

ξ⊥ ∼ (pc − p)−ν⊥ ξ|| ∼ (pc − p)−ν|| (20)

whereξ⊥ andξ|| are the spatial and temporal correlation lengths, respectively, andν⊥ andν||
the correlation length exponents.
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On the other hand, based on this analogy with DP, we write the following scaling relation
for the average density of active sites at sitex and timet , given a site active in the originx = 0
at t = 0,

ρa(x, t) = tη− 2
z f

(
x2

t2/z
,
t

ξ||

)
(21)

first introduced by Grassberger and de la Torre [14] in the context of DP. Hereη is a scaling
exponent andz the dynamic scaling exponent, as usually defined in the context of critical
phenomena. Moreover, the probability that the avalanche survives up to timet is given by

P(t) = t−δg
(
t

ξ||

)
(22)

whereδ is another scaling exponent. From equation (21) one can derive the scaling laws for the
average number of active sitesn(t), the cluster massm(t) and the mean-squared displacement
R2(t) at timet , resulting in

n(t) =
∫

ddx ρa(x, t) = tηf1

(
t

ξ||

)
m(t) =

∫ t

0
dt ′ n(t ′) = t1+ηf2

(
t

ξ||

)
R2(t) = 1

n(t)

∫
ddx ρa(x, t)x

2 = t2/zf3

(
t

ξ||

)
.

(23)

The exponentz is not independent, sincet ∼ rz . From equation (20) one obtains

z = ν||
ν⊥

(24)

and it is therefore identical to that for DP in an infinite lattice. Nevertheless, the exponentsη

andδ depend on the boundary conditions, as is observed in DP near a wall [13].

3.2. The casepc 6 p < 1

We assume that the scaling laws in equations (21)–(23) are also valid abovepc, but with
ξ|| = ξ||(L). In this region the dynamical evolution is independent ofp and the characteristics
length and time depend only on the lattice sizeL, according to

ξ⊥ ∼ L ξ|| ∼ Lz. (25)

However, as is shown below, forp > pc the global conservation introduces a constraint
between the exponentsη andz.

Let us calculate the average energy fluxJ (r) outside an sphere of radiusr, given a grain
of energy added at the originr = 0 at t = 0. The energy flux is proportional to the gradient
of the average density of active sites and, therefore,

J (r) ∝ r2
∫

dt
∂

∂r
ρa(r, t). (26)

Substituting the scaling relation forρa(r, t) (21) in this expression results in

J (r) = r(1+η)z−2f4

(
r

ξ⊥

)
. (27)

Now, conservation implies thatJ (r) = 1 for r < ξ⊥ ∼ L and, therefore,

(1 +η)z = 2. (28)
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This scaling relation may seem unusual: a more familiar expression is obtained from the mean
avalanche size

〈s〉 =
∫

dt n(t) ∼ L(1+η)z = L2. (29)

This scaling relation was previously obtained by Dhar [16] but for a particular sandpile model.
Here we have demonstrated, using scaling arguments, that it holds for any sandpile model with
global conservation.

3.3. Directed models

In the directed stochastic model there is a preferential directionl for the avalanche evolution.
Taking this preferential direction as the equivalent of time in undirected models we can apply
the scaling theory developed above to directed models. This means that the scaling relations
in equations (21)–(23) are also valid for directed models, but nowx is a (d − 1)-dimensional
vector in the space of the nonpreferential directions andt gives the evolution in the directionl.

Another important difference between undirected and directed models is the place where
toppling takes place during the evolution of the avalanche. In the undirected model not only the
sites in the avalanche front, but also sites inside this front may be active, transfering energy to
their neighbours. In contrast, in directed models all active sites are in the avalanche front, i.e.
at stept all active sites are in the layerl = t . Moreover, active sites in layerl transfer energy
only to those neighbours in layerl + 1. Hence, in directed models the energy flux follows the
preferential direction, while in the undirected case the energy flows in all directions.

An immediate consequence of this difference is that in directed models the average outflux
of energy from thel = t to the l + 1 layer, which is proportional to the average number of
active sites in thel = t layer, equals one and, therefore,

n(t) ∼ 1. (30)

Then, from equation (23) one obtains

η = 0. (31)

Thus the energy balance leads to a different constraint for the set of scaling exponents(η, z, δ),
i.e. the directed model belongs to a different universality class.

4. Numerical simulations and discussion

In order to test our predictions, we have performed some numerical simulations for the
stochastic sandpile model in one dimension. We have investigated both regimes of the phase
diagram, the region similar to DP belowpc and the SOC region above. In both regions we
start with a flat pile, i.e. zero height in all sites, and let the system evolve to the stationary state.
Abovepc the stationary state is characterized by a constant average energy per site, which was
taken as the stationary condition. Belowpc the energy increases with time and, therefore, we
look for another stationarity criterion. According to MF theory in the quasi-stationary state
belowpc we haveρu = 1, which was taken as the stationary condition. In all cases we start
measuring after the system reaches the stationary state. Averages were taken over 10 000 000
avalanches belowpc and over 1000 000 avalanches above. Belowpc we use the lattice size
L = 10 240, which was large enough to avoid finite-size effects for the values ofp considered.
Abovepc we usep = 0.708 and different lattice sizes.
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Figure 3. The correlation lengths logξ⊥ (squares) and
logξ|| (circles) as a function ofp in the subcritical state.
The lines are linear fits to the log–log plot.

Figure 4. Data collapse plot forP(t) in the subcritical
state forp = 0.670, 0.688, 0.696 and 0.700.

To obtain an estimate ofpc we have calculated the correlation lengths in the subcritical
state for different values ofp and fitted the numerical data to the scaling laws in equation (20).
These magnitudes were computed in the simulations using the following expressions

ξ2
⊥ ∼

∑∞
t=0

∑L
i=0(i − i0)2ρai∑∞

t=0

∑L
i=0 ρai

ξ|| ∼
∑∞

t=0

∑L
i=0 tρai∑∞

t=0

∑L
i=0 ρai

(32)

wherei0 is the position of the initial active site,t is the number of steps measured in the
timescale of the avalanche andρai = 1 (ρai = 0) in active (unstable) sites.

The log–log plot of the correlation lengths versuspc − p is shown in figure 3. The best
fit to the numerical data was obtained for

pc = 0.707± 0.002 (0.705 485)

ν⊥ = 1.07± 0.03 (1.0968)

ν|| = 1.71± 0.03 (1.7338).

(33)

Enclosed in parenthesis are the series expansion estimates for DP in an infinite lattice reported
in [15]. Within the numerical error there is a complete agreement between the values reported
here and those of DP.

Then, we proceed to determine the exponentsδ, η andz from the data collapse plots of
P(t), m(t) andR2(t), using the scaling laws in equation (23). The corresponding plots are
shown in figures 4–6. The best data collapse were obtained for

δ = 0.18± 0.01 (0.159 47)

η = 0.27± 0.01 (0.313 68)

z = 1.59± 0.01 (1.580 74)

ν|| = 1.73± 0.01 (1.7338)

(1 +η)z = 2.02± 0.02.

(34)

From the data collapse we have obtained a better estimate forν|| and, using the scaling relation
(24) and the value ofz in (34), we obtain the best estimate forν⊥:

ν⊥ = 1.09± 0.02 (1.0968). (35)



2642 A Vázquez and O Sotolongo Costa

Figure 5. Data collapse plot form(t) in the subcritical
state forp = 0.670, 0.688, 0.696 and 0.700.

Figure 6. Data collapse plot forR2(t) in the subcritical
state forp = 0.670, 0.688, 0.696 and 0.700.

As was expected the critical probability, the correlation length exponents, andz are identical,
within the numerical error, to those reported for DP in an infinite lattice, while theη andδ
results are different.

Now let us analyse the numerical simulations in the SOC regionpc 6 p < 1. In this
case we can estimate the critical probability from the divergence of the average energy per
site 〈E〉 nearpc. In the SOC region〈E〉 reaches a stationary value but increases with time
belowpc. Therefore〈E〉 must diverge when the system approaches the critical probability
from above. We observe that the divergence of〈E〉 can be fitted to the power-law dependence
〈E〉 ∼ (p − pc)−λ, whereλ is a scaling exponent. In figure 7 we have plotted the best fit to
the numerical data for a lattice sizeL = 1280, resulting in

pc = 0.704± 0.01 (0.705 485) (36)

which is close to the DP value.
Then we proceed to determine the exponentsδ, η andz from the data collapse above

pc, using the scaling laws in equations (23) and (25). The best data collapse are shown in
figures 8–10 with

δ = 0.18± 0.01 (0.159 47)

η = 0.28± 0.01 (0.313 68)

z = 1.57± 0.01 (1.580 74)

(1 +η)z = 2.01± 0.02.

(37)

From the comparison of these values with those in equation (34) we conclude that the scaling
exponentsδ, η and z are the same above and belowpc. Moreover, the scaling relation
in equation (28) is in both cases satisfied, although it was demonstrated only forp > pc.
Hence, there are only three independent scaling exponents,ν⊥, ν|| andδ, while z andη can
be determined using the scaling relations in equations (24) and (28). The correlation length
exponents are identical to those of DP in an infinite lattice whileδ depends on the boundary
conditions and, therefore, changes the universality class.

5. Summary and conclusions

We have obtained, through a MF analysis, the phase diagram of the stochastic sandpile
model. There is a critical probabilitypc above which the system is in a SOC state, where
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Figure 7. Average energy per lattice site as a function of
p in the SOC state. The continuous line is a linear fit in
the log–log scale.

Figure 8. Data collapse plot forP(t) in the SOC state
for L = 160, 320 and 640.

Figure 9. Data collapse plot form(t) in the SOC state
for L = 160, 320 and 640.

Figure 10. Data collapse plot forR2(t) in the SOC state
for L = 160, 320 and 640.

the correlation lengths diverge in the thermodynamic limit. Belowpc the system is subcritical,
it is characterized by a finite susceptibility which diverges when the critical state is approached.
While the stationary state in the SOC state is characterized by a well-defined average energy
per lattice site, the subcritical state is not completely stationary, since the average energy per
lattice size increases linearly with time. Then, it has been shown that global conservation is a
necessary condition to obtain SOC in sandpile models.

Using scaling arguments in the subcritical region, the analysis has shown that the stochastic
sandpile model is similar to DP, but with different boundary conditions. On the other hand, the
scaling theory in the SOC state reveals that global conservation introduces a constraint among
the scaling exponents, generalizing previous results obtained for particular sandpile models.
We have provided a general demonstration of the scaling law〈s〉 ∼ L2.

Numerical simulations validate the predictions of the MF and scaling theory. The
correlation length exponents and the critical probability have been found, within the numerical
error, to be identical to the estimates for DP. However, the existence of different boundary
conditions and conservation law leads to differences in other exponents, changing the
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universality class.
We must emphasize that the stochastic sandpile model is not just another cellular

automaton showing SOC, but a very nice example with which to understand the differences and
similarities between SOC and ordinary nonequilibrium critical phenomena. The comparison
of the phase diagram of this model with that of DP reveals the essential property of SOC, the
insensitivity to changes in model parameters. While the critical state in DP is restricted to
a point in the phase diagram, in the stochastic sandpile model it is extended through a line
segment.
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